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Interfacial Adsorption in Two-Dimensional
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The interfacial adsorption W at the first-order transition in two-dimensional
q-state Potts models is studied. In particular, findings of Monte Carlo simula-
tions and of density-matrix renormalization group calculations at q=16 are
consistent with the analytic result, obtained in the Hamiltonian limit at large
values of q, that W B t&1�3 on approach to the bulk critical temperature Tc ,
t=|Tc&T |�Tc . In addition, the numerical findings allow to estimate corrections
to scaling. Our study supports and quantifies a previous conclusion by
Bricmont and Lebowitz based on low temperature expansions.

KEY WORDS: Potts model; interfacial adsorption; Monte Carlo simula-
tions; density-matrix renormalization group; Hamiltonian limit.

1. INTRODUCTION

The interface between two phases may become unstable against the
appearance of a third phase. This wetting phenomenon has been studied in
various circumstances, considering different materials and geometries, both
experimentally and theoretically.(1)

Good candidates for modelling wetting are q-state Potts models, (2, 3)

where the two phases correspond to distinct boundary states, say, 1 and q,
at opposite sides of the system. In that case one observes an excess adsorp-
tion of the non-boundary states at the interface between ``1'' rich and ``q''
rich domains.
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In particular, in two dimensions, the interfacial adsorption, W, is
found to diverge on approach to the critical temperature Tc like W B t&|,
where t=|Tc&T |�Tc . For q=3 and 4, the bulk transition is continuous
and | can be expressed in terms of canonical bulk critical exponents,
|=&&;.(2) For larger values of q, the transition is of first order. On
general, phenomenological grounds, (4) one may expect then |=1�3, as
observed in Monte Carlo (MC) simulations on the two-dimensional
Blume�Capel model.(5) However, previous simulations on the two-dimen-
sional 20-state Potts model suggested that | may be significantly larger
than 1�3, albeit a pronounced curvature in the corresponding log�log plots
for W(t) was noticed indicating that the asymptotic behavior may not have
been reached.(3) A reasonable explanation of the numerical findings was
then offered by Bricmont and Lebowitz.(6) Based on low-temperature
expansions, the critical region is argued to be extremely narrow in the
Potts case, in contrast to the Blume�Capel case.(6) However, a numerical
confirmation remained to be done.

Motivated by a recent intriguing analysis of the interfacial tension of
the q-state Potts model in two dimensions employing a field-theoretic
representation for configurations of the interface(7) (extending prior con-
siderations)(2), we decided to reconsider the somewhat irritating problem
on the value of | for q>4. Indeed, advances in methods and computer
facilities allow now to explore numerically the critical region more deeply
than some years ago. In addition, we dealt with the issue analytically by
studying the Hamiltonian limit of the Potts model for large values of q
exactly.

The outline of the article is as follows. In the next Section, the model
is defined, and the numerical methods of our choice, MC simulations and
density-matrix renormalization group (DMRG) calculations, are intro-
duced. Then, we discuss the results obtained from those methods. In
Section 4, the analytical findings in the Hamiltonian limit are presented.
A summary concludes the paper.

2. MODEL AND NUMERICAL METHODS

The two-dimensional q-state Potts model is described by the
Hamiltonian

H=&J :
(ij), (i $ j $)

$nij , ni $j $
(1)

summing over neighboring sites (ij), (i $j $) on a L_M rectangular lattice,
with the Potts variable nij=1, 2,..., q. In the thermodynamic limit,
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L, M � �, the model displays a bulk phase transition at the critical tem-
perature kBTc �J=1�ln(- q+1), (8) where kB is the Boltzmann constant.
The transition is of continuous type at q�4, while it is of first order at
larger values of q.

To introduce an interface, we add a column of M sites on the left side
boundary, fixing the Potts variable to be in the state nL=1, and another
column on the right side boundary with nR=q. The Potts variables on the
top and at the bottom of the lattice may be connected by periodic bound-
ary conditions (``periodic case''). Alternatively, the interface may be pinned
at the lower and upper boundaries by inserting there additional boundary
rows with fixed states being ``1'' on the left half and ``q'' on the right half
(pinned case).

By examining typical Monte Carlo equilibrium configurations below Tc ,
it is seen that an excess of non-boundary states is adsorbed at the interface,
as illustrated in Fig. 1. This wetting phenomenon may be described quan-
titatively by the net interfacial adsorption W per unit length

W=1�M :
(ij), nb

(($nb, nij
) 1:q&($nb, nij

) 1:1) (2)

summing over all L_M sites in the inner part of the system; the ( )
brackets refer to thermal averages; the index nb denotes the non-boundary
states, nb=2,..., q&1; the subscripts 1:q and 1:1 refer to systems with
corresponding fixed states at the boundaries, i.e., with and without inter-
face. The net adsorption W is closely related to the density profiles

nb1:b2
(s, i)=1�M :

j

($s, nij
) b1 :b2

(3)

describing the variation of the density of state s by going from the left side,
fixed in state b1 , to the right side, fixed in state b2 , of the lattice, summing
over each column, j=1,..., M, with i running from 1 to L. Obviously,

W= :
i, nb

(n1 :q(nb, i)&n1:1(nb, i)) (4)

We computed profiles and net adsorption numerically, using Monte
Carlo techniques(9) and the density-matrix renormalization group method.(10)

In the MC simulations, the standard single-variable flip algorithm was
applied, for system sizes L�256 and M�2000, studying mostly the peri-
odic case, augmented by a few runs for the pinned case. To obtain accurate
equilibrium data, we typically averaged over several realizations (using dif-
ferent random numbers), each consisting of 106 Monte Carlo steps per site,
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including at least 105 steps for equilibration. Error bars resulted from
averaging over the ensemble of realizations. Usually, we set q=16, where
the bulk phase transition is strongly first order with a bulk correlation
length of a few lattice spacings at Tc .(11) To search for possible q-dependen-
ces, we also simulated models with q=20 and 40. Furthermore, because
clusters, formed by neighboring sites in the same state, seem to play an
interesting role in the wetting phenomenon, see Fig. 1, we also computed
cluster properties in the MC study.

In the DMRG method, one considers strip-like lattices, i.e., M � �,
while L is finite. The algorithm, introduced by White in 1992(12) for the
study of the low-lying spectrum of quantum spin chains, has been extended
in several directions.(10) In the present study we follow Nishino's(13) for-
mulation of the method adapted to treat classical two-dimensional systems,
where the approach is used for constructing iteratively approximate trans-
fer matrices, starting from strips of small width (say, L=8) which can be
also handled numerically exactly. At each DMRG step the strip width is
increased, and the configurational space is truncated efficiently through the
projection into smaller subspaces with the help of appropriate density
matrices.

We do not need to-describe details of the widely used DMRG proce-
dure here: a good introduction, together with recent developments, can be

Fig. 1. Typical Monte Carlo equilibrium configuration of the two-dimensional 16-state
Potts model with an interface, at T=0.99Tc : On the left (right) hand side there is a large ``1''
(``16'') cluster. The boundaries of the other clusters of distinct Potts states at and away from
the interface are indicated by closed lines; a few of those clusters are labeled by their states.
A MC system of size L=60 and M=60, periodic case, was simulated, but only 48 (out of
M=60) successive rows are depicted.
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found in ref. 10. The DMRG technique has already been applied to the
two-dimensional Potts model, both at continuous, q�4, (14, 15) and first-
order transitions, q>4.(16) In the former case, bulk and surface critical
exponents have been calculated with a high degree of accuracy.(15) In the
present study we are interested in rather large values of q, where the
standard DMRG method is less suitable. An appropriate, powerful variant,
the ``pseudo-spin'' version, has been introduced in ref. 16. It enables one to
treat systems with special values of q, namely q= p2, p=2, 3,... . We used
that algorithm in the current work. Most calculations were performed at
q=16, augmented by some calculations at q=9, for strips of widths up
to L=80. We kept up to m=60 states per block with a typical truncation
error of =r10&6. From the dominant eigenvector of the transfer matrix the
profiles(15) and the interfacial adsorption W were calculated.

3. NUMERICAL RESULTS

The crucial quantity, which we computed numerically, is the net
adsorption W as a function of the system size, L, M, and temperature t,
W(L, M, t). The main aim is to analyze its critical behavior as t � 0 or
T � Tc , in the thermodynamic limit L, M � �. For that, one may
extrapolate the numerical data for W to that limit, or one may study
systems for which finite-size effects can be neglected. We also tried to per-
form a finite-size scaling analysis on W(L, M, t), (5) see below.

In any event, accurate data are needed. Their quality can be con-
veniently tested by comparing results obtained from the MC simulations
and the DMRG calculations, as illustrated in Figs. 2 and 3.

In Fig. 2, profiles, Eq. (3), are shown for the 16-state Potts model with
and without interface, demonstrating again the excess adsorption of
non-boundary states at the interface. In Fig. 3, the increase of the net
adsorption W with increasing width L of the Potts model, at various tem-
peratures, is displayed. In both figures, the finite-size effect arising from the
length M of the system can be disregarded. In fact, M is infinite in the
DMRG approach. In the simulations (periodic case), M was checked to be
sufficiently large so that W approached closely W(L, M=�, t), with the
characteristic crossover value depending, of course, on the width L and the
distance from criticality t=|Tc&T |�Tc .

As exemplified in Figs. 2 and 3, data from both methods do, indeed,
agree nicely, being obviously accurate and reliable. Slight systematic devia-
tions seem to become significant only for quite wide systems, say, L>60.
A reasonable extrapolation of our data for W to the thermodynamic limit
is feasible for temperatures T�0.998Tc , see Fig. 3. Closer to Tc , both
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Fig. 2. Profiles, summed over the non-boundary (nb) states, n1:b(i)=�nb n1:b(nb, i) for
systems with interface, b=16, and without interface, b=1, at T=0.99Tc and L=24, as
obtained from the DMRG method (open circles) and MC simulations (periodic case with
M=400; full diamonds).

Fig. 3. Net adsorption, W, vs. inverse width, 1�L, of the lattice at (from bottom to top)
t=0.01, 0.005, 0.002, 0.001, and 0.0005, depicting DMRG (open circles) and MC (periodic
case with M�1000; full diamonds) data.
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numerical methods would require much larger system sizes demanding
extremely large storage and�or computing time.

In the thermodynamic limit, one expects W B t&| as t � 0. To
monitor the approach to the asymptotic behavior, one may consider the
effective exponent

|eff (t)=&d ln W�d ln t (5)

with |=|eff (t=0). In Fig. 4, numerical estimates of the effective exponent
are shown. At t�0.02, we determined |eff from MC data for systems being
large enough to disregard finite-size effects. Actually, finite-size effects are
much stronger in the pinned case than in the periodic case, and only MC
data for the latter case are included, with L=64 and M�400. At t�0.01,
estimates are based on extrapolating MC and DMRG results for W to the
thermodynamic limit, see Fig. 3. Note that the net adsorption is calculated
at discrete temperatures, ti , and the effective exponent may be approxi-
mated by |eff (t)=&ln(W(ti )�W(ti+1))� ln(ti �ti+1), with t=- ti ti+1. Error
bars in Fig. 4 stem from a proliferation of the error in the net adsorp-
tion W. Evidently, |eff depends strongly on the distance from criticality t.

Fig. 4. Temperature, t, dependence of the effective exponent of the net adsorption W, |eff (t),
for numerical data ``free of finite-size effects,'' see text. The dashed curve corresponds to the
fit to Eq. (6), with W0=3.280, a=&1.977, b=0.939, and x=0.165, quantifying the correc-
tions to scaling.
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For instance, in the range 0.1>t>0.002, it changes from about 1.2 to about
0.5 when moving towards Tc . Accordingly, an average critical exponent
in that interval would be supposedly significantly larger than the true
asymptotic critical exponent |, as observed before.(3) Presuming |=1�3, see
refs. 4 and 6 as well as Section 4, it follows from Fig. 4 that the asymptotic
regime is very narrow, and corrections to scaling are quite pronounced. To
quantify these corrections, one may postulate the standard ansatz

W(t)=W0 t&1�3(1+atx+bt2x+ } } } ) (6)

The coefficients can be calculated from chi-square fits to the numerical data
near Tc . Using, for instance, a fit to the points in the interval 0.02�t�0.1
(shown in Fig. 4), leads to a net adsorption W reproducing very well the
numerical findings both closer to Tc and further away from Tc . Eventually,
systematic deviations show up when further lowering the temperature,
reflecting the need for additional correction terms in Eq. (6) in that region,
see Fig. 4. The exponent x characterizing the corrections to scaling is found
to be rather small, x=0.14\0.06. Because of its smallness, we included the
leading, with the exponent x, and subleading, 2x, terms in the ansatz (6).
The error bars arise from using a variety of plausible fitting intervals and
points.

From MC simulations of Potts models with larger number of states,
q=20 and 40, one may conclude that the corrections to scaling, at t>0.01,
are rather insensitive to the concrete value of q.

From general considerations, (4, 5) one expects two diverging lengths at
the interface, in the direction parallel to the interface, ! | | , and per-
pendicular to it, != , with != B t&| and ! | | B t&2|, as t � 0, see also
Section 4. For strip-like systems, M � �, the following finite size scaling
expressions can be then motivated(5)

W(L, M=�, t)=t&|w1(Lt|) (7)

in the limit of Lt|>>1, and

W(L, M=�, t=0) B L (8)

for L>>1. Indeed, the DMRG results indicate that Eq. (8) seems to be
satisfied rather well already for strips of moderate width, say, L�16, see
also ref. 3. On the other hand, the numerical data do not suffice to establish
the scaling form (7) with |=1�3. In fact, a ``reasonable'' collapse of our
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data on an apparent scaling function w1 might be achieved with a some-
what larger value, |r1�2. Careful inspection, however, reveals that
systematic deviations from a unique scaling curve w1 set in for large
arguments Lt|. Thence, larger systems close to Tc had to be studied (which
are, at present, out of reach, because of limitations in storage and comput-
ing time). Indeed, |r1�2 is merely an upper bound of the true value of |.
This observation corroborates the above mentioned finding on |eff : One
has to include corrections to scaling to demonstrate consistency of the
numerical data with the theoretically expected asymptotic behavior, due to
the narrowness of the critical region.

In closing the Section on the MC and DMRG results, we remark that
the thermally averaged largest cluster of non-boundary states, as computed
in the simulations, seems to diverge by approaching Tc from below.
A detailed analysis would be desirable, but it is beyond the scope of the
present study.

4. THE HAMILTONIAN LIMIT FOR LARGE VALUES OF q

In the following we consider the Hamiltonian limit of the Potts model
with strong vertical and weak horizontal couplings.(17) The transfer matrix
in the vertical direction has the form T=exp(&H� ), with the one-dimen-
sional Hamiltonian H� (18)

H� =& :
L&1

i=1

$ni , ni+1
&h :

L

i=1

:
q&1

k=1

M k
i (9)

ni is the Potts variable on site i and M k
i denotes the flip operation M k

i | ni)
=|ni+k, mod q). The strength of the transverse field, h, at the transition
point is hc=1�q. Quantities of physical interest are derived from the
ground state, |90) , and from the energies of the ground state and the first
excited state, E0 and E1 , of (9).

The Hamiltonian limit of the Potts model has been treated recently(16)

for free boundary conditions. In that case, the solution has a remarkably
simple form in the vicinity of the transition point for large values of q.
Repeating the same type of considerations for models with an interface,
fixing the variables at the boundaries in the states ``1'' and ``q'' (1 :q) (as
before), one finds that the ground state sector of the Hamiltonian (9) is
spanned by the vectors

|�i, j)=|11 } } } 1(nb)(nb) } } } (nb) qq } } } q) (10)
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where a non-boundary state is given by |(nb))=1�- q ( |2) +|3) + } } } +
|q&1) ), and the positions of the domain walls separating the boundary and
non-boundary states are denoted by i (=1, 2,..., L) and j (=i, i+1,..., L). The
diagonal matrix-elements of these states, (�i, j | H� |�i, j)=&L&( j&i) t,
with t (=hq&1, |t|<<1) being the distance from the critical point, are
smaller by an amount of O(1) compared to any other states, like those con-
taining boundary states in the domain of non-boundary (nb) states. The
Hamiltonian in the ground state sector, spanned by the vectors (10), can
be written as

H� g=&( j&i) t&h - q [(a++a&)+(b++b&)] (11)

up to a constant; the operators, a\ and b\ which move the positions of
the domain walls in (10), are defined as

a\ |�i, j) =|�i\1, j) , 1<i< j; a+ |�i, i)=a& |�1, j) =0
(12)

b\ |�i, j) =|�i, j\1) , i< j<L; b& |�i, i)=b+ |�i, L) =0

In the continuum limit, when L>>1, i>>1 and j>>1, but x=i�L=
O(1) and y= j�L=O(1), the Hamiltonian (11) can be written in the form
of a differential operator

H� g�(x, y)=&_h - q
L2 \ �2

�x2+
�2

�y2++tL( y&x)& �(x, y)=E�(x, y) (13)

with the boundary condition 0�x� y�1.
At the critical point, t=0, the solution of the eigenvalue problem (13)

reads

�(x, y)=2[sin(?k1x) sin(?k2 y)&sin(?k2x) sin(?k1 y)] (14)

with k1=1, 2,... and k2=k1+1, k1+2,... . For the ground state, �0(x, y),
one has k1=1 and k2=2, whereas for the first excited state k1=1 and
k2=3. Thus the energy gap is 2E=E1&E0=5?2h - q L&2, and the
correlation length parallel to the interface behaves as ! | |t(2E )&1

tL2.
Since the correlation length perpendicular to the interface is, at the critical
point, limited by the width of the system, !=tL, one arrives at ! | |t!2

= ,
in agreement with the relation mentioned above.
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The density profiles satisfy the relations n1:q(1, x)=n1 :q(q, 1&x) and
n1:q(x)=�nb n1 :q(nb, x)=1&n1 :q(1, x)&n1:q(q, x). From the ground
state, one obtains

n1:q(1, x)=|
1

x
dx$ |

1

x$
dy[�0(x, y)]2

=
4
?2 {_?

2
(1&x)+

1
4

sin 2?x&_?
2

(1&x)+
1
8

sin 4?x&&
4
9

sin6 ?x=
(15)

For small x, one finds n1:q(1, x)=1&(10?2�3) x3+O(x6), whereas for x
close to one, the profile behaves like n1:q(1, x)t(1&x)10. The profile of
non-boundary states is symmetric and its maximal value is given by
n1:q(1�2)=1�2+32�(9?2)=0.86025.

For the (1:1) boundary condition, the profile of non-boundary states
tends to zero for large values of q. Therefore the interfacial adsorption W,
Eq. (2), at the transition point may be approximated by

W
L

=|
1

0
n1:q(x) dx=

1
3

+
35

72?2=0.3826 (16)

Thus, at the transition point, W is, indeed, proportional to L, see Eq. (8).
Note that the prefactor seems to depend on q, being, at q=16, about 0.3,
according to the DMRG calculations.

Below the critical point, t{0, we consider the eigenvalue equation (13)
in terms of the new variables x+=( y+x)�- 2 and x&=( y&x)�- 2. Then

&_h - q 2
L2 \ �2

�x2
+

+
�2

�x2
&++tL - 2 x&& �(x+ , x&)=E�(x+ , x&) (17)

with the boundary condition 0�x&�x+�1�- 2 and 0�x&�- 2&x+

�1�- 2. Now the eigenfunction � can be written as �(x+ , x&)=
,+(x+) ,&(x&). ,+(x+) satisfies the freeparticle equation &d2,+ �dx2

+=
L2E+ �(2h - q ) ,+ ; ,&(x&) is the solution of the Schro� dinger equation of
a particle in a linear potential

&_h - q 2
L2

�2

�x2
&

+tL - 2 x&& ,&(x&)=E&,(x&) (18)
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Equation (18) leads to bound states, and the energy scale (both for the
ground state and the excited states) is set by =tt2�3. Hence the temperature
dependence of the parallel correlation length is given by ! | |t(2E )&1

t

t&2�3, in accordance with the phenomenological considerations.(4) On the
other hand, the extent of the bound states sets the length scale !=tt&1�3,
which is then proportional to the interfacial adsorption, W. Thence, in the
Hamiltonian limit for large values of q, one has |=1�3.

5. SUMMARY

In this article, critical interfacial properties of two-dimensional q-state
Potts models at the bulk first-order phase transition have been studied. We
applied two numerical methods, Monte Carlo simulations and the density-
matrix renormalization group approach, mainly at q=16. Furthermore, we
considered analytically the model in its Hamiltonian limit at large values of q.

The different methods lead to a consistent description of the critical
behavior. The interfacial adsorption W diverges on approach to the phase
transition temperature as W B t&|, |=1�3, with a very narrow asymp-
totic region. The strong corrections to scaling are characterized by a small
exponent, x=0.14\0.06, which seems to depend (if at all) only weakly on
the number of Potts states, q. At the critical point, W diverges linearly with
the width of the system (being indefinitely long in the direction parallel to
the interface). The proportionality factor has been calculated in the
Hamiltonian limit.

The value of the critical exponent |, |=1�3, is typical for wetting
phenomena at bulk transitions of first order in two dimensions. It follows
from general, phenomenological considerations, based on an effective inter-
face Hamiltonian, (4) as well as from calculations on various microscopic
multi-state models, such as Potts and the Blume�Capel models. The strong
corrections to scaling and the narrowness of the critical region are, on the
other hand, features which are specific for Potts models. They have been
predicted before(6) by using low-temperature arguments, and they have
been quantified in this study.
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